Repository logo
Communities & Collections
Browse Data@TAMU
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Santschi, Peter"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Research Project
    Using Radioiodine Speciation to Address Environmental Remediation and Waste-Stream Sequestration Problems at the Fukushima Daiichi Nuclear Power Plant and a DOE Site
    Marine Science; TAMUG; https://hdl.handle.net/20.500.14641/534; DOE - Office of Nuclear Energy
    Iodine-129 is one of three key risk drivers at several DOE waste management sites. Natural organic matter (NOM) is thought to play important roles in immobilization of aqueous iodide (I-) and iodate (IO3-) in the environment, but molecular interactions between NOM and iodine species are poorly understood. In this work, we investigated iodine and carbon speciation in three humic acid (HA)-I systems using I K-edge XANES and EXAFS and C K-edge XANES spectroscopy: 1) I- in the presence of laccase (an oxidase enzyme) and a mediator, 2,2?-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in pH 4 buffer, 2) I- in the presence of lactoperoxidase (LPO) and H2O2 in pH 7 buffer, 3) IO3- in pH 3 groundwater. The oxidase and peroxidase systems were less effective than the laccase-ABTS mediator system at oxidizing I- to I2 or hypoiodide (HOI), resulting in I- uptake by HA increasing from 0.4 to 2.9 mg/g in the oxidase and peroxidase systems to 13.5 mg/g in the laccase-ABTS mediator system. IO3- was abiotically reduced to I2 / HOI. Pathways for HA iodination include covalent modification of aromatic-type rings by I2 / HOI or iodine incorporation into newly formed benzoquinone species arising from oxidation of phenolic C species. This study improves our molecular understanding of NOM-iodine interaction and describes the important role that mediators may play in the enzymatic reactions between iodine and NOM. KEYWORDS: Enzyme, Humic acid, Iodine immobilization, I K-edge XANES and EXAFS, C K-edge XANES

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback