Repository logo
Communities & Collections
Browse Data@TAMU
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Suntzeff, Nicholas"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Research Project
    The Carnegie Supernova Project - Pushing the Precision of Type Ia Supernovae as Cosmological Standard Candles
    Physics And Astronomy; TAMU; https://hdl.handle.net/20.500.14641/457; National Science Foundation
    This award funds research on an extensive dataset that will provide firm tests of the types of stars that end their life as Type Ia supernovae. The researchers will recalibrate data to higher precision and gain a better understanding of systematic errors and uncertainties. Results from this work will help provide tests of general relativity and improve our understanding of dark energy. Graduate students and postdoctoral researchers will be trained and mentored in research. Public outreach programs incorporating research results will be carried out at the home institutions of the PIs. The final reduced data will be made available to the astronomical community. This project will be accomplished by completing data reduction of optical and near-infrared wavelength images to produce final light curves of supernova explosions. They will also complete data reduction of near-infrared spectra of supernova explosions with an emphasis on improved removal of telluric absorption. They will produce new spectral templates for the community, analyze host galaxy properties, and produce Hubble diagrams. Finally, they will compare theory with observation and look for evidence of interaction with non-degenerate companions or circumstellar material. They will also probe the explosion physics as a function of luminosity and light curve decline rate. The dataset will also be used to improve the precision of using supernova Type Ia data as distance indicators for constraining the nature of dark energy.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback