Repository logo
Communities & Collections
Browse Data@TAMU
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wong, Ka Wai"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Research Project
    Collaborative Research: New Directions in Multidimensional and Multivariate Functional Data Analysis
    Statistics; TAMU; https://hdl.handle.net/20.500.14641/501; National Science Foundation
    Functional data analysis, which deals with a sample of functions or curves, plays an important role in modern data analysis. Nowadays in the era of "Big Data", multidimensional and multivariate functional data are becoming increasingly common, especially in biological, medical, and engineering applications. There are significant challenges posed by the very large dimension and complex structure of these data. The proposed research will substantially narrow the gap between the increasing demand for handling such data in practice, and the insufficient development of statistical methods and computational tools. This research has applications to neuroscience, climate science, and engineering. It will provide scientists, engineers, and doctors with tools to help understand problems in their area, and enhance interdisciplinary collaborations. This project offers a comprehensive research plan to advance the understanding and applicability of multidimensional and multivariate functional data. The research will focus on the following three sub-projects: (1) Develop data-adaptive and interpretable representation of the covariance function for multidimensional functional data, (2) Develop a novel model-free procedure to detect dependency between components of multivariate functional data, and (3) Address the modeling and prediction of multivariate functional time series. The resulting methods will be applied to neuroimaging and climate data. The integration of these three sub-projects will foster creative directions and strategies for multidimensional and multivariate functional data. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback