Browsing by Author "Wooley, Karen"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Research Project DMREF: Collaborative Research: Interface-promoted Assembly and Disassembly Processes for Rapid Manufacture and Transport of Complex Hybrid Nanomaterials-Chemistry; TAMU; https://hdl.handle.net/20.500.14641/598; National Science FoundationNON-TECHNICAL DESCRIPTION: The intimate combination of inorganic nanoparticles and organic polymers within nanoscopic packages of controlled sizes and shapes includes many challenges with the processes for their production and many opportunities for unique materials properties. Organic polymers are typically considered as plastics and they have physical and mechanical properties that allow them to serve common roles, such as elastic materials (clothing, tents, parachutes, etc.), containment vessels (cups, plastic bags, etc.), and high technology needs, such as optical materials (eye glasses, OLED devices, etc.), engineering materials (airplane parts, football helmets, etc.), among many others. Inorganic nanoparticles are typically rigid and often possess characteristics of magnetism, optical signaling or catalytic reactivity. This project will develop computational methods to guide approaches to rapidly discover and manufacture hybrid inorganic-organic nanostructured objects (HIONs) possessing complexity of compositions, structures, properties and functions. TECHNICAL DESCRIPTION: The primary hypothesis driving our project is that the contrasting interactions of polymers vs nanoparticles vs HIONs with each other and with surfaces and flow fields in porous media and other designed interfaces can be harnessed to develop methods for scalable production. The assembly of organic polymers or inorganic particles or their co-assembly is usually conducted in either the solution state or in the bulk. Although simulations have guided polymer and particle assembly processes, this research activity adds the complexity of assembly/disassembly in a flow field and in an adaptive resolution solvent(s) model, and will elucidate how interfaces impact assembly/disassembly. Experimentally, HION assembly/disassembly at solution-solid substrate interfaces in a flow system or at solvent-solvent interfaces represent new frontiers. Only recently has incorporation of discrete nanoscale heterogeneity on surfaces been demonstrated to allow quantitative mechanistic prediction of particle retention on unfavorable surfaces, as well as mechanistic prediction of release in response to perturbations in solution ionic strength and fluid velocity. Ultimately, the primary goal is to be able to conduct high throughput, tunable manufacturing of complex HIONs that exhibit compositions, structures, morphologies and properties for diverse technological applications.Research Project SusChEM: Resourceful Polymers Derived from Polyhydroxyl Natural ProductsChemistry; TAMU; https://hdl.handle.net/20.500.14641/598; National Science FoundationOrganic polymer materials, commonly thought of as plastics, are of critical importance to every aspect of human life, from the clothes that we wear to the computers that we use to the tires on which we drive to the devices through which medicines are administered. Two key challenges with polymer materials are their production from petrochemical sources, which are non-renewable, and their persistence in the environment. To address these challenges, Professors Wooley, Darensbourg, and Dr. Sun of Texas A&M University are designing strategies to produce polymer materials from natural building blocks while also incorporating degradable linkages that regenerate those natural building blocks once the material has completed its useful lifetime. This project includes research and educational components to impact fundamental knowledge about polymer materials across the disciplines of chemistry and engineering. The research team is developing synthetic chemistry approaches to the production of a series of polycarbonates and polyphosphoesters that originate from renewable resources, exhibit novel chemical, physical and mechanical properties, and undergo hydrolytic breakdown to biologically-beneficial or benign by-products. In one direction, this project combines polyhydroxyl natural products as the monomeric building blocks and carbonates as the linkages. Hydrolytic degradation of the resulting polymers produces the polyhydroxyl compound plus carbon dioxide. In a second direction, phosphoester linkages are utilized, again borrowing from Nature, in phosphoesters commonly found in biological macromolecules, such as DNA or RNA. The research activities include 1) the synthesis of functional monomers from polyhydroxyl natural products, 2) the transformation of those monomers into linear, branched or crosslinked polymer materials by either step-growth condensation or chain-growth ring-opening polymerizations, 3) rigorous characterization studies to determine the compositions, structures, physicochemical and mechanical properties; and 4) the study of hydrolytic stabilities and degradation products.