Research Project: Applications of Carbon-Fluorine Bond Activation by Main Group Electrophilic Catalysts to PFAS Remediation
Loading...
Date
Authors
Principal Investigators
Department
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract or Project Summary
Significantly fluorinated triarylmethyl cations have long attracted attention as potentially accessible highly reactive carbocations, but their isolation in a convenient form has proved elusive. We show that abstraction of chloride with a cationic silylium reagent leads to the facile formation of di-, tetra-, and hexafluorinated trityl cations, which could be isolated as analytically pure salts with the [HCB11Cl11] counterion and are compatible with (halo)arene solvents. The F6Tr+ cation carrying six meta-F substituents was computationally predicted to possess up to 20% higher hydride affinity than the parent triphenylmethyl cation Tr+. We report that indeed F6Tr+ displays reactivity unmatched by Tr+. F6Tr+ at ambient temperature abstracts hydrides from the C–H bonds in tetraethylsilane, mesitylene, methylcyclohexane, and catalyzes Friedel–Crafts alkylation of arenes with ethylene, while Tr+ does none of these.
Description
Grant