Research Project: Seeing Core-Collapse Supernovae in the Ultraviolet
Loading...
Date
Authors
Principal Investigators
Co-Principal Investigators
- Suntzeff, Nicholas
Department
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract or Project Summary
Core-collapse supernovae are the catastrophic deaths of massive stars. Ultraviolet observations are needed to understand the energy of the explosion through the study of the bolometric light curves. Early-time ultraviolet observations constrain the size of the progenitor. Ultraviolet spectra can break the degeneracies between temperature/ionization, reddening, and metallicity which hinder our understanding of ultraviolet photometry. Optical observations of high-redshift supernovae probe rest-frame ultraviolet wavelengths, requiring space-based observations of nearby supernovae against which to compare. Ultraviolet observations of core-collapse supernovae can also help distinguish them from type Ia supernovae, enabling cleaner photometric type Ia supernova samples for cosmological measurements. The Ultraviolet/Optical Telescope (UVOT) on the Swift satellite has observed over two hundred core-collapse supernovae in the ultraviolet, including sixty-nine ultraviolet grism spectra of twenty core-collapse SNe. Additional ultraviolet spectra have been obtained by the International Ultraviolet Explorer, Hubble Space Telescope, and Galaxy Evolution Explorer. We propose a project to reduce the Swift grism spectra and combine with the other ultraviolet and groundbased optical/NIR spectra to create time-series bolometric spectra. We will use these bolometric spectra to better understand temperature, reddening, and metallicity and create bolometric light curves of these core collapse SNe. We will also use early time ultraviolet photometry and spectroscopy to constrain the progenitors of core collapse SNe. The ultraviolet observations fill a critical niche in our understanding of core collapse supernovae, and this program will enhance the scientific use of this important dataset from multiple space missions. Beyond core-collapse supernovae, the templates will allow studies of the dust properties around the progenitor systems (including the wavelength dependence of the extinction). The templates will improve the photometric classification and distance bias modeling for Type Ia supernova cosmology, while the extinction and temperature constraints will improve the use of type IIP supernovae as a distinct distance indicator on their own.
Description
Grant